skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vitharana, Sandun S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present a dynamic multi-robot mapping framework that combines Blockchain technology for swarm management with a Hybrid Ant Colony Optimization (HACO) algorithm for path planning. Blockchain-based swarm contracts enable decentralized, transparent, and secure task allocation, acceptance, tracking, and reward distribution among multiple robots. HACO facilitates efficient path planning in complex environments through cooperative and competitive strategies. We deploy multiple LiDAR-equipped Unitree Go2 dog robots to collaboratively and competitively map divided sub-areas, with task reassignment based on real-time feedback and the selected strategy. In cooperative mode, robots share data to boost efficiency and accuracy; in competitive mode, they work independently to reduce redundancy and optimize resources. Swarm contracts also verify full sub-area coverage via the merged map. Results show that integrating blockchain-based management with HACO significantly enhances mapping performance, delivering a robust and scalable solution for realworld multi-robot systems. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  2. This paper presents a novel framework for memory-based navigation for terrestrial robots, utilizing a customized multimodal large language model (MLLM) to interpret visual inputs and generate navigation commands. The system employs a Unitree GO1 robot equipped with a camera to capture environmental images, which are processed by the customized MLLM for navigation. By leveraging a memory-based approach, the robot efficiently reuses previously traversed paths, reducing the need for re-exploration and enhancing navigation efficiency. The hybrid controller in this work features a deliberation unit and a reactive controller for high-level commands and robot alignment. Experimental validation in a hallway-like environment demonstrates that memory-driven navigation improves path retracing and overall performance. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026